Predicting polymer nanofiber interactions via molecular simulations.

نویسندگان

  • Sezen Buell
  • Gregory C Rutledge
  • Krystyn J Van Vliet
چکیده

Physical and functional properties of nonwoven textiles and other fiberlike materials depend strongly on the number and type of fiber-fiber interactions. For nanoscale polymeric fibers in particular, these interactions are governed by the surfaces of and contacts between fibers. We employ both molecular dynamics (MD) simulations at a temperature below the glass transition temperature T(g) of the polymer bulk, and molecular statics (MS), or energy minimization, to study the interfiber interactions between prototypical polymeric fibers of 4.6 nm diameter, comprising multiple macromolecular chains each of 100 carbon atoms per chain (C100). Our MD simulations show that fibers aligned parallel and within 9 nm of one another experience a significant force of attraction. These fibers tend toward coalescence on a very short time scale, even below T(g). In contrast, our MS calculations suggest an interfiber interaction that transitions from an attractive to a repulsive force at a separation distance of 6 nm. The results of either approach can be used to obtain a quantitative, closed-form relation describing fiber-fiber interaction energies U(s). However, the predicted form of interaction is quite different for the two approaches, and can be understood in terms of differences in the extent of molecular mobility within and between fibers for these different modeling perspectives. The results of these molecular-scale calculations of U(s) are used to interpret experimental observations for electrospun polymer nanofiber mats. These findings highlight the role of temperature and kinetically accessible molecular configurations in predicting interface-dominated interactions at polymer fiber surfaces, and prompt further experiments and simulations to confirm these effects in the properties of nonwoven mats comprising such nanoscale fibers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Properties of Glassy Polyethylene Nanofibers via Molecular Dynamics Simulations

The extent to which the intrinsic mechanical properties of polymer fibers depend on physical size has been a matter of dispute that is relevant to most nanofiber applications. Here, we report the elastic and plastic properties determined from molecular dynamics

متن کامل

Giant Thermal Rectification from Polyethylene Nanofiber Thermal Diodes.

The realization of phononic computing is held hostage by the lack of high-performance thermal devices. Here, it is shown through theoretical analysis and molecular dynamics simulations that unprecedented thermal rectification factors (as large as 1.20) can be achieved utilizing the phase-dependent thermal conductivity of polyethylene nanofibers. More importantly, such high thermal rectification...

متن کامل

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

Structure of a tethered polymer under flow using molecular dynamics and hybrid molecular-continuum simulations

We analyse the structure of a single polymer tethered to a solid surface undergoing a Couette flow. We study the problem using molecular dynamics (MD) and hybrid MD-continuum simulations, wherein the polymer and the surrounding solvent are treated via standard MD, and the solvent flow farther away from the polymer is solved by continuum fluid dynamics (CFD). The polymer represents a freely join...

متن کامل

Fabrication of Carbon Nanotube Polymer Actuator Using Nanofiber Sheet

Carbon nanotube polymer actuators were developed using composite nanofiber sheets fabricated by multi-walled carbon nanotubes(MWCNTs) and poly (vinylidene fluorideco-hexafluoropropylene) (PVDF-HFP). Nanofiber sheets were fabricated by electrospinning method. The effect of flow rate and polymer concentration on nanofiber formation were verified for optimum condition for fabricating nanofiber she...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 2 4  شماره 

صفحات  -

تاریخ انتشار 2010